Modulation of multidrug resistance protein 1 (MRP1/ABCC1)-mediated multidrug resistance by bivalent apigenin homodimers and their derivatives.

نویسندگان

  • Iris L K Wong
  • Kin-Fai Chan
  • Ka Hing Tsang
  • Chi Yin Lam
  • Yunzhe Zhao
  • Tak Hang Chan
  • Larry Ming Cheung Chow
چکیده

Here we showed that bivalency approach is effective in modulating multidrug resistance protein 1 (MRP1/ABCC1)-mediated doxorubicin (DOX) and etoposide (VP16) resistance in human 2008/MRP1 ovarian carcinoma cells. Flavonoid dimers bearing five or six ethylene glycol (EG) units with 6-methyl (4e, 4f) or 7-methyl (5e, 5f) substitution on the ring A of flavonoid dimers have the highest modulating activity for DOX against MRP1 with an EC(50) ranging from 73 to 133 nM. At 0.5 microM, the flavonoid dimer 4e was sufficient to restore DOX accumulation in 2008/MRP1 to parental 2008/P level. Lineweaver-Burk and Dixon plot suggested that it is likely a competitive inhibitor of DOX transport with a K(i) = 0.2 microM. Our data suggest that flavonoid dimers have a high affinity toward binding to DOX recognition site of MRP1. This results in inhibiting DOX transport, increasing intracellular DOX retention, and finally resensitizing 2008/MRP1 to DOX. The present study demonstrates that flavonoid dimers can be employed as an effective modulator of MRP1-mediated drug resistance in cancer cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modulation of multidrug resistance protein 1 (MRP1/ABCC1) transport and atpase activities by interaction with dietary flavonoids.

The 190-kDa phosphoglycoprotein multidrug resistance protein 1 (MRP1) (ABCC1) confers resistance to a broad spectrum of anticancer drugs and also actively transports certain xenobiotics with reduced glutathione (GSH) (cotransport) as well as conjugated organic anions such as leukotriene C(4) (LTC(4)). In the present study, we have investigated a series of bioflavonoids for their ability to infl...

متن کامل

Mechanistic differences between GSH transport by multidrug resistance protein 1 (MRP1/ABCC1) and GSH modulation of MRP1-mediated transport.

Multidrug resistance protein 1 (MRP1/ABCC1) is an ATP-dependent polytopic membrane protein that transports many anticancer drugs and organic anions. Its transport mechanism is multifaceted, especially with respect to the participation of GSH. For example, vincristine is cotransported with GSH, estrone sulfate transport is stimulated by GSH, or MRP1 can transport GSH alone, and this can be stimu...

متن کامل

Notch1 regulates the expression of the multidrug resistance gene ABCC1/MRP1 in cultured cancer cells.

Multidrug resistance (MDR) is a barrier to successful cancer chemotherapy. Although MDR is associated with overexpression of ATP-binding cassette (ABC) membrane transporters, mechanisms behind their up-regulation are not entirely understood. The cleaved form of the Notch1 protein, intracellular Notch1 (N1(IC)), is involved in transcriptional regulation of genes. To test whether Notch1 is involv...

متن کامل

Nuclear Multidrug-Resistance Related Protein 1 Contributes to Multidrug-Resistance of Mucoepidermoid Carcinoma Mainly via Regulating Multidrug-Resistance Protein 1: A Human Mucoepidermoid Carcinoma Cells Model and Spearman's Rank Correlation Analysis

BACKGROUND Multidrug resistance-related protein 1 (MRP1/ABCC1) and multidrug resistance protein 1 (MDR1/P-glycoprotein/ABCB1) are both membrane-bound drug transporters. In contrast to MDR1, MRP1 also transports glutathione (GSH) and drugs conjugated to GSH. Due to its extraordinary transport properties, MRP1/ABCC1 contributes to several physiological functions and pathophysiological incidents. ...

متن کامل

3β-Acetyl Tormentic Acid (3ATA) a Novel Modulator of ABCC Proteins Activity

Multidrug resistance (MDR) is considered the main cause of cancer chemotherapy failure and patient relapse. The active drug efflux mediated by transporter proteins of the ABC (ATP-binding cassette) family is the most investigated mechanism leading to MDR. With the aim of inhibiting this transport and circumventing MDR, a great amount of work has been dedicated to identifying pharmacological inh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of medicinal chemistry

دوره 52 17  شماره 

صفحات  -

تاریخ انتشار 2009